3.648 \(\int \frac {\sec ^{\frac {5}{2}}(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\)

Optimal. Leaf size=246 \[ \frac {\sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}{b d}+\frac {\sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}-\frac {\sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{b d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{b d \sqrt {a+b \sec (c+d x)}} \]

[Out]

(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*((b+a*co
s(d*x+c))/(a+b))^(1/2)*sec(d*x+c)^(1/2)/d/(a+b*sec(d*x+c))^(1/2)-a*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/
2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2,2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)*sec(d*x+c)^(1/2)/
b/d/(a+b*sec(d*x+c))^(1/2)-(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2
)*(a/(a+b))^(1/2))*(a+b*sec(d*x+c))^(1/2)/b/d/((b+a*cos(d*x+c))/(a+b))^(1/2)/sec(d*x+c)^(1/2)+sin(d*x+c)*sec(d
*x+c)^(1/2)*(a+b*sec(d*x+c))^(1/2)/b/d

________________________________________________________________________________________

Rubi [A]  time = 0.62, antiderivative size = 246, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 12, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.480, Rules used = {3860, 4109, 3859, 2807, 2805, 3862, 3856, 2655, 2653, 3858, 2663, 2661} \[ \frac {\sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}{b d}+\frac {\sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}-\frac {\sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{b d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{b d \sqrt {a+b \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^(5/2)/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]])/(d*Sqrt[a + b*Se
c[c + d*x]]) - (a*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*
x]])/(b*d*Sqrt[a + b*Sec[c + d*x]]) - (EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(b*d*Sq
rt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c + d*x]]) + (Sqrt[Sec[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*
x])/(b*d)

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2807

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d*
Sin[e + f*x])/(c + d)]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 3856

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3858

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(Sqrt[d*
Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3859

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(d*Sqr
t[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/(Sin[e + f*x]*Sqrt[b + a*Sin[e + f
*x]]), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3860

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*d^2
*Cos[e + f*x]*(d*Csc[e + f*x])^(n - 2)*Sqrt[a + b*Csc[e + f*x]])/(b*f*(2*n - 3)), x] + Dist[d^3/(b*(2*n - 3)),
 Int[((d*Csc[e + f*x])^(n - 3)*Simp[2*a*(n - 3) + b*(2*n - 5)*Csc[e + f*x] - 2*a*(n - 2)*Csc[e + f*x]^2, x])/S
qrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 2] && IntegerQ[2*n
]

Rule 3862

Int[1/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]), x_Symbol] :> Dist[1/a,
 Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[b/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b
*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4109

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)
]*(b_.) + (a_)]), x_Symbol] :> Dist[C/d^2, Int[(d*Csc[e + f*x])^(3/2)/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[
A, Int[1/(Sqrt[d*Csc[e + f*x]]*Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, d, e, f, A, C}, x] && NeQ[a^2
 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx &=\frac {\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{b d}+\frac {\int \frac {-a-a \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{2 b}\\ &=\frac {\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{b d}-\frac {a \int \frac {1}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{2 b}-\frac {a \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{2 b}\\ &=\frac {\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{b d}+\frac {1}{2} \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx-\frac {\int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx}{2 b}-\frac {\left (a \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec (c+d x)}{\sqrt {b+a \cos (c+d x)}} \, dx}{2 b \sqrt {a+b \sec (c+d x)}}\\ &=\frac {\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{b d}+\frac {\left (\sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{2 \sqrt {a+b \sec (c+d x)}}-\frac {\left (a \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec (c+d x)}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{2 b \sqrt {a+b \sec (c+d x)}}-\frac {\sqrt {a+b \sec (c+d x)} \int \sqrt {b+a \cos (c+d x)} \, dx}{2 b \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}}\\ &=-\frac {a \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{b d \sqrt {a+b \sec (c+d x)}}+\frac {\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{b d}+\frac {\left (\sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{2 \sqrt {a+b \sec (c+d x)}}-\frac {\sqrt {a+b \sec (c+d x)} \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{2 b \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}\\ &=\frac {\sqrt {\frac {b+a \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{d \sqrt {a+b \sec (c+d x)}}-\frac {a \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{b d \sqrt {a+b \sec (c+d x)}}-\frac {E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{b d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{b d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 9.43, size = 329, normalized size = 1.34 \[ \frac {\sqrt {\sec (c+d x)} \left (4 \tan (c+d x) (a \cos (c+d x)+b)-6 a \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )-\frac {2 i \csc (c+d x) \sqrt {-\frac {a (\cos (c+d x)-1)}{a+b}} \sqrt {\frac {a (\cos (c+d x)+1)}{a-b}} \sqrt {a \cos (c+d x)+b} \left (a \left (2 b F\left (i \sinh ^{-1}\left (\sqrt {\frac {1}{a-b}} \sqrt {b+a \cos (c+d x)}\right )|\frac {b-a}{a+b}\right )+a \Pi \left (1-\frac {a}{b};i \sinh ^{-1}\left (\sqrt {\frac {1}{a-b}} \sqrt {b+a \cos (c+d x)}\right )|\frac {b-a}{a+b}\right )\right )-2 b (a+b) E\left (i \sinh ^{-1}\left (\sqrt {\frac {1}{a-b}} \sqrt {b+a \cos (c+d x)}\right )|\frac {b-a}{a+b}\right )\right )}{a b \sqrt {\frac {1}{a-b}}}\right )}{4 b d \sqrt {a+b \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^(5/2)/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(Sqrt[Sec[c + d*x]]*(-6*a*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*a)/(a + b)] - ((2*I
)*Sqrt[-((a*(-1 + Cos[c + d*x]))/(a + b))]*Sqrt[(a*(1 + Cos[c + d*x]))/(a - b)]*Sqrt[b + a*Cos[c + d*x]]*Csc[c
 + d*x]*(-2*b*(a + b)*EllipticE[I*ArcSinh[Sqrt[(a - b)^(-1)]*Sqrt[b + a*Cos[c + d*x]]], (-a + b)/(a + b)] + a*
(2*b*EllipticF[I*ArcSinh[Sqrt[(a - b)^(-1)]*Sqrt[b + a*Cos[c + d*x]]], (-a + b)/(a + b)] + a*EllipticPi[1 - a/
b, I*ArcSinh[Sqrt[(a - b)^(-1)]*Sqrt[b + a*Cos[c + d*x]]], (-a + b)/(a + b)])))/(a*Sqrt[(a - b)^(-1)]*b) + 4*(
b + a*Cos[c + d*x])*Tan[c + d*x]))/(4*b*d*Sqrt[a + b*Sec[c + d*x]])

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(5/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sec \left (d x + c\right )^{\frac {5}{2}}}{\sqrt {b \sec \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(5/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^(5/2)/sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

maple [C]  time = 1.75, size = 996, normalized size = 4.05 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(5/2)/(a+b*sec(d*x+c))^(1/2),x)

[Out]

-1/d*(-2*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticPi((-1+cos(d*x+c))*((a
-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*cos(d*x+c)^2*sin(d*x+c)*a+2*((b+a*cos(d*x+c))/(
1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(
-(a+b)/(a-b))^(1/2))*cos(d*x+c)^2*sin(d*x+c)*a-((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c))
)^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)^2*sin(d*x+c)
*a+((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+
b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)^2*sin(d*x+c)*b-2*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b)
)^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*cos(d*x+c)*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(
a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*a+2*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2
)*cos(d*x+c)*sin(d*x+c)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a-((b+a
*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2
)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)*sin(d*x+c)*a+((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1
+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)*
sin(d*x+c)*b+cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a-cos(d*x+c)*((a-b)/(a+b))^(1/2)*a+cos(d*x+c)*((a-b)/(a+b))^(1/2
)*b-((a-b)/(a+b))^(1/2)*b)*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*(1/cos(d*x+c))^(5/2)*cos(d*x+c)^2/sin(d*x+c)/(b
+a*cos(d*x+c))/((a-b)/(a+b))^(1/2)/b

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sec \left (d x + c\right )^{\frac {5}{2}}}{\sqrt {b \sec \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(5/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^(5/2)/sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}}{\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1/cos(c + d*x))^(5/2)/(a + b/cos(c + d*x))^(1/2),x)

[Out]

int((1/cos(c + d*x))^(5/2)/(a + b/cos(c + d*x))^(1/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(5/2)/(a+b*sec(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________